
www.manaraa.com

Green chemistry for chemical synthesis
Chao-Jun Li*† and Barry M. Trost†‡

*Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 2K6; and ‡Department of
Chemistry, Stanford University, Stanford, CA 94305-5080

Edited by Jack Halpern, University of Chicago, Chicago, IL, and approved July 3, 2008 (received for review May 5, 2008).

Green chemistry for chemical synthesis addresses our future challenges in working with chemical processes and products by invent-
ing novel reactions that can maximize the desired products and minimize by-products, designing new synthetic schemes and appa-
rati that can simplify operations in chemical productions, and seeking greener solvents that are inherently environmentally and
ecologically benign.

atom economy � synthetic efficiency � sustainable chemical feedstocks � green solvents

O
ver the past two centuries,
fundamental theories and re-
activities in chemistry have
been soundly established.

Such theories and reactivities have pro-
vided the foundations for the chemical
enterprise that generates critical living
needs such as food for the world’s popu-
lation, achieves various medical wonders
that save millions of lives and improve
people’s health, and produces materials
essential to the present and future needs
of mankind. Just less than two centuries
ago, organic compounds were believed
to be only accessible through biological
processes under the influence of ‘‘vital
forces’’ (1). Today, many molecules of
great complexity can be synthesized
readily. The total syntheses of natural
products with extremely high complexity
such as vitamin B12 (2) and palytoxin
(3) in the laboratory are testimonials
of achievements comparable to the con-
struction of the great pyramids at the
molecular scale. However, despite such
enormous achievements, we are facing
great challenges in future chemical syn-
thesis. The present state-of-the-art pro-
cesses for synthesizing chemical products
are highly inefficient. The concept of
atom economy (4, 5) was created to
emphasize the importance of this ineffi-
ciency. The E factor (6) provided a quan-
tifiable measure of such inefficiency and
showed that, for every kilogram of fine
chemical and pharmaceutical products
produced, 5–100 times that amount of
chemical waste is generated. Such low
efficiency in state-of-the-art organic
syntheses presents great challenges in
resource conservation and draws envi-
ronmental and health concerns related
to the chemical wastes.

Since its birth over a decade ago the
field of Green Chemistry has been spe-
cifically designed to meet such chal-
lenges in chemical synthesis (7, 8). To
address these challenges, innovative and
fundamentally novel chemistry is needed
throughout the synthetic processes:

feedstocks, reactions, solvents, and
separations.

Chemical Feedstocks
Presently, the main feedstock of chemi-
cal products comes from nonrenewable
petroleum that is being depleted rapidly
both for chemical and energy needs.
However, nature provides a vast amount
of biomass in the renewable forms of
carbohydrates, amino acids, and triglcer-
ides to obtain organic products (9), but
a major obstacle to using renewable
biomass as feedstock is the need for
novel chemistry to transform the large
amounts of biomass selectively and effi-
ciently, in its natural state, without ex-
tensive functionalization, defunctional-
ization, or protection.

Reactions
Reactions play the most fundamental
role in synthesis. The ideology of Green
Chemistry calls for the development of
new chemical reactivities and reaction
conditions that can potentially provide
benefits for chemical syntheses in terms
of resource and energy efficiency, prod-
uct selectivity, operational simplicity,
and health and environmental safety.

Atom Economy. Conventionally, attaining
the highest yield and product selectivity
were the governing factors of chemical
synthesis. Little consideration was given
to the usage of multiple reagents in stoi-
chiometric quantities, which often were
not incorporated into the target mole-
cule and would result in significant side
products. However, in a balanced chemi-
cal reaction, a simple addition or cyclo-

addition incorporates all atoms of the
starting materials into the final product.
Recognizing this fundamental phenome-
non, in 1991 (4) Trost presented a set of
coherent guiding principles for evaluat-
ing the efficiency of specific chemical
processes, termed the atom economy,
which has subsequently been incorpo-
rated into the ‘‘Twelve Principles of
Green Chemistry’’ and has altered the
way many chemists design and plan their
syntheses. Atom economy seeks to maxi-
mize the incorporation of the starting
materials into the final product of any
given reaction. The additional corollary
is that, if maximum incorporation can-
not be achieved, then ideally the quanti-
ties of side products should be minute
and environmentally innocuous. There is
a fundamental difference in the manner
in which a reaction yield and the atom
economy yield is calculated (Fig. 1).

The reaction yield is only concerned
with the quantity of the desired product
that is isolated, relative to the theoreti-
cal quantity of the product. Atom econ-
omy takes all used reagents and unwanted
side products into account along with the
desired product. For example, substitu-
tions and eliminations represent the vast
majority of uneconomical classical reac-
tions in which inherent wastes are un-
avoidable (Scheme 1). Simple additions or
cycloadditions and rearrangements repre-
sent desired modes of reactivities (Scheme
1). Reaction Mass Efficiency (RME)
and Mass Intensity (MI) are additional
concepts to evaluate the efficiency of
synthetic reactions to take into account
the reaction yield (10).

Recently, innovative reactions with
such inherent advantages have been de-
veloped with the aid of chemical and
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Reaction Yield =
quantity of product isolated

theoretical quantity of product
x 100%

Atom Economy =
molecular wt. of desired product

x 100%
molecular weight of all products

Fig. 1. Definition of the fundamental difference
in the manner in which the reaction and the atom
economy yields are generated.
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biological catalysts. Some representative
examples are the following.
Isomerizations. Isomerization of propargyl
alcohols into conjugated carbonyl com-
pounds provides an atom-economic
means for synthesizing such compounds.
By using a ruthenium-catalyzed redox
isomerization of propargyl alcohols into
enones in lieu of the traditional two-step
stoichiometric reduction and oxidation
sequence, a catalytic enantioselective
total synthesis of adociacetylene B can
be realized efficiently (Scheme 2) (11).
Isomerization of an alkynyl vinylcyclo-
propene to a fused 5- to 7-ring structure
converts classical atom inefficient syn-

thetic strategies to ones of ideal atom
economy (Scheme 3) (12).
Ring-opening metathesis polymerization. The
living ring-opening metathesis polymer-
ization developed by Grubbs and co-
workers represents another type of
isomerization and has been used to
make a variety of materials, such as
those used in dentistry (Scheme 4) (13).
Addition reactions. The processes of add-
ing allyl alcohol to alkynes to form �,�-
unstaturated ketones and aldehydes in
aqueous media were developed by Trost
et al. (14) and Dixneuf et al. (15), re-
spectively (Scheme 5). Another elegant
example was recently reported by

Krische and coworkers (16), in which
primary alcohols were added stereos-
electively to alkenes, which provides an
atom-economic version of the classical
reaction where a Grignard reagent is
added to an aldehyde (Scheme 6).

Direct Conversion of C–H Bonds. Direct
transformation of the C–H bonds of or-
ganic molecules into desired structures
without extra chemical transformations
represents another class of major desir-
able reactions (17–23). In nature, a vari-
ety of organic compounds can be oxi-
dized easily by molecular oxygen or
other oxygen donors in the cells of bac-
teria, fungi, plants, insects, fish, and
mammals (24–26). It is worth noting the
important advances in biomimetic ap-
proaches to such oxidations (27–36).
Hydroxylation of linear alkanes or meth-
ane to generate terminal alcohols is very
useful in the synthesis of chemicals and
fuels (37).

However, the direct conversion of
C–H bonds into C–C bonds leads to
more efficient syntheses of complex
products with reduced synthetic opera-
tions (38). Recently, great progress has
been made in transition-metal-catalyzed
activation and further reaction of C–H
bonds (39). Li (40) and others have
developed various methods to generate
C–C bonds directly from two different
C–H bonds in the presence of an oxidiz-
ing reagent through a cross-dehydroge-
native coupling (CDC) catalyzed by
transition metals. For example, (NH)-
indoles and tetrahydroisoquinolines were
converted directly into alkaloids by us-
ing such a coupling (Scheme 7) (41).

Recently, an elegant cross-coupling
of two aryl C–H bonds to form arene–
arene coupling products was reported by
Fagnou, Sanford, and others (Scheme 8)
(42, 43).

Synthesis Without Protections. Because of
the nature of classical chemical reactiv-
ity, organic synthesis extensively utilizes
protection–deprotection of functional
groups, which increases the number of
steps in synthesizing the desired target
compounds. Novel chemistry is needed
to perform organic synthesis without
protection and deprotection. Recently,
progress has been made on this subject.
For example, Baran et al. (44) have re-
ported a total synthesis of a natural
product without any protecting groups.
Another instance is the efficient synthe-
sis of (�)-3-deoxy-D-glycero-D-galacto-
nonulosonic acid (KDN) by using the
indium-mediated allylation reaction
in water reported by Chan and Li
(Scheme 9) (45).

The Knoevenagel condensation of the
�-diketone with hemiacetalic sugar gave
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�-C-glucosidic ketone in water directly
(Scheme 10) (46).

The Click chemistry (47) developed
by Sharpless tolerates a wide range of
functionalities and allows the direct
modification of biological compounds.
The archetypical example of Click
chemistry is the Huisgen 1,3-dipolar
cycloaddition of alkynes to azides to
form 1,4-disubsituted 1,2,3-triazoles
catalyzed by Cu(I) (Scheme 11). The
reaction is mild and highly efficient,
and does not require protecting
groups.

Tandem/Cascade/Flow Reactors. Also of
fundamental importance to greener syn-
theses is the development of tandem

and cascade reaction processes that in-
corporate as many reactions as possible
to give the final product in one opera-
tion. For example, a palladium-catalyzed
tandem reaction resulted in multirings
in one step (Scheme 12) (48). Another
example is Jamison’s synthesis of the
core piece of ‘‘ladder’’ polyether marine
natural products through a biomimetic
cascade cyclization in neutral water
(Scheme 13) (49).

An alternative way to simplify organic
syntheses into a single operation is to
perform sequential reactions in a flow
reactor. Ley and colleaques (50) re-
ported that a multistep synthesis of the
alkaloid natural product (�)-oxomariti-
dine can be accomplished by using mi-

crofluidic pumping systems that pass
material through various packed col-
umns containing immobilized reagents,
catalysts, scavengers, or catch-and-re-
lease agents, combining seven separate
synthetic steps linked into one continu-
ous sequence (Scheme 14).

Biocatalysis. Through millions of years
of evolution and ‘‘sustainability,’’ na-
ture developed highly efficient and se-
lective means to achieve the desired
transformations. The potential useful-
ness of various catalysts of Nature,
such as enzymes (51), whole cells, and
catalytic antibodies (52) for organic
synthesis, has become more and more
recognized. Frequently, biocatalysis
leads to extremely high reaction rates
and selectivities such as enantioselec-
tivities that go beyond the reach of
chemical catalysts. These developments
have provided powerful and parallel
tools in the synthetic chemist’s toolbox.
However, the high substrate specificity
of enzymes presents a dilemma for syn-
thetic chemistry in which wide sub-
strate applicability is desired. The re-
cent exciting development in ‘‘directed
evolution’’ (53) provides potential op-
portunities in using biological catalysts
to overcome this issue.

Solvents
Solvents are auxiliary materials used in
chemical synthesis. They are not an inte-
gral part of the compounds undergoing
reaction, yet they play an important role
in chemical production and synthesis.
By far, the largest amount of ‘‘auxiliary
waste’’ in most chemical productions is
associated with solvent usage. In a clas-
sical chemical process, solvents are used
extensively for dissolving reactants, ex-
tracting and washing products, separat-
ing mixtures, cleaning reaction apparati,
and dispersing products for practical
applications. Although the invention
of various exotic organic solvents has
resulted in some remarkable advances
in chemistry, the legacy of such solvents
has led to various environmental and
health concerns. Consequently, as part
of Green Chemistry efforts, various
cleaner solvents have been evaluated
as replacements (54).

The primary function of solvents in
classical chemical syntheses is to facili-
tate mass transfer to modulate chemical
reactions in terms of reaction rate,
yields, conversions, and selectivity. They
do this by dissolving the reactants in
dilute homogeneous mixtures. The
ironic aspect of this process is that, after
the reaction, the final product has to be
reseparated from the solvent through
energy-intensive means.
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The development of Green Chemistry
redefines the role of a solvent: An ideal
solvent facilitates the mass transfer but
does not dissolve! In addition, a desirable
green solvent should be natural, non-
toxic, cheap, and readily available. More
desirably, it should have additional ben-
efits of aiding the reaction, separation,
or catalyst recycling. The concept of or-
ganic reactions ‘‘on-water,’’ (55) in
which non-water-soluble reagents react
by floating on water to generate a non-
water-soluble and readily separable final
product, is an excellent manifestation of
this new definition.

Water. The only natural solvent on earth
is water. Life requires the construction
of chemical bonds in an aqueous envi-
ronment. It is obvious that water is the

most inexpensive and environmentally
benign solvent. Since it was reported
that Diels–Alder reactions (56) could
be greatly accelerated by using water as
a solvent instead of organic solvents
(Scheme 15), there has been consider-
able attention dedicated to the develop-
ment of organic reactions in water (57–
59). Besides Diels–Alder reactions,
other examples cover almost all of the
most useful organic reactions, even
‘‘water-sensitive’’ reactions (Scheme 16)
(60). In many cases, because of hydro-
phobic effects, using water as a solvent
not only accelerates reaction rates but
also enhances reaction selectivities, even
when the reactants are sparingly soluble
or insoluble in the medium. Further-
more, the low solubility of oxygen gas
in water, an important property in the

early development of life in an anaero-
bic environment, can facilitate air-
sensitive transition-metal catalysis in
open air (61). The use of water as a sol-
vent also implies the elimination of te-
dious protection–deprotection processes
for certain acidic-hydrogen-containing
functional groups, which contributes to
the overall synthetic efficiency. Water-
soluble compounds, such as carbohy-
drates, can be used directly without the
need for laborious derivatization and
water-soluble catalysts can be reused
after separation from water-insoluble
organic products. Aqueous organic
chemistry is also essential in the emerg-
ing field of chemical biology, which uses
chemical tools to study biological systems.

One challenge of using water as a sol-
vent is the regeneration of pure water that
contains only minor impurities. In this
respect, newer purification technologies
such as ultrafiltration or natural evapora-
tion (if the impurity is not vaporizable)
help. Another challenge of using water is
separating water-soluble products from
water. In addition, many organic com-
pounds are not soluble in water. Although
‘‘on-water’’ techniques have provided ex-
cellent solutions for some situations, there
will be cases where completely soluble in
water is desired.

CO2. In some cases, water is undesirable.
Although some chemical processes may
be modified to use water, green solvents
with different properties than water are
nevertheless needed. One such solvent is
liquid and supercritical CO2. It is also a
natural solvent, although some energy
(pressure) is consumed in its production.
In addition, CO2 is renewable, nonflam-
mable, and readily evaporating. Other
excellent features of CO2 include its fast
drying time, better ability to dissolve
organic compounds, and better flow abil-
ity because of its low viscosity compared
with other solvents including water.
These properties are complementary to
water and provide supplementary needs.
Through the landmark work by Noyori
et al. (62), DeSimone et al. (63), Tumas
and colleaques (64), Leitner (65), and
others, supercritical CO2 is emerging as
an important medium for chemical syn-
thesis. One special feature of liquid and
supercritical CO2 is its high mixibility
with gases, which offers high efficiency
(and often higher selectivity) in reac-
tions such as hydrogenations with hydro-
gen gas and oxidations with air (66).
Another feature of CO2 is its rapid sep-
aration from catalysts and products by
simple depressurization and recapture.
Taking the advantage of these features,
Britz et al. (67) (Scheme 17) and Cole-
Hamilton et al. (68) developed an effi-
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cient flow chemical reactor for clean
synthesis (Fig. 2).

Nonnatural Solvents. In addition to the
two ‘‘natural green solvents’’, various
nonnatural ones have also been inten-
sively studied as green alternatives. The
most widely studied ones are ionic liq-
uids (69). The greatest advantage of
these solvents is their low vapor pres-
sures, which offer advantages in reduc-
ing volatile organics in the air. Such
novel solvents also offer various interest-
ing new chemistries such as dissolving

cellulose (70) and changing the outcome
of reactions (71). Another innovative
discovery is the recently developed
‘‘switchable solvents’’ by Jessop, Liotta,
Erckert, and others (72). Such solvents
change their properties with different
needs. Beside these solvents, other syn-
thetic solvents such as fluorous (73, 74)
and property-changing soluble polymer
systems (75) have been evaluated as po-
tential green alternatives.

Conclusion
Our future challenges in resource, en-
vironmental, economical, and societal

sustainability demand more efficient
and benign scientific technologies for
working with chemical processes and
products. Green chemistry addresses
such challenges by inventing novel re-
actions that can maximize the desired
products and minimize by-products,
designing new synthetic schemes and
apparati that can simplify operations in
chemical productions, and seeking
greener solvents that are inherently
environmentally and ecologically be-
nign. Together, such fundamental inno-
vations in chemical sciences will lead
us to a new generation of chemical
syntheses.
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Fig. 2. Continuous supercritical hydrogenation.
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